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Cavitation in lubrication. Part 1. On boundary conditions 
and cavity-fluid interfaces 

By M. D. SAVAGE 
School of Mathematics, University of Leeds, England 

(Received 31 May 1976) 

The flow of viscous lubricant in narrow gaps is considered for those geometries in which 
cavitation arises. A detailed review is presented of those boundary conditions which 
have been proposed for terminating the lubrication regime (i.e. those valid where the 
cavity forms). Finally it is shown that a uniform cavity-fluid interface remains stable 
to small disturbances provided that 

in which T and r represent the surface tension of the fluid and the radius of curvature 
of the interface respect,ively whilst dPldx is the gradient of fluid pressure immediately 
upstream of the interface. 

1. Introduction 
This paper is concerned with the phenomenon of cavitation in the context of hydro- 

dynamic lubrication. In  the flow within a journal bearing (figure l u )  and between 
counter-rotating cylinders (figure 1 b )  (or between a cylinder and a plane; figure 1 c ) ,  
there can arise an air cavity either by ventilation or through dissolved air being 
expelled from the viscous lubricant once its pressure falls below the saturation vapour 
pressure. 

Over a period of half a century many authors have addressed themselves to the 
problem of establishing those boundary conditions which are valid a t  the leading edge 
of the cavity and which permit a solution to be determined for the pressure distribution 
in the lubrication regime. With the exception of Floberg (1  957) each author has con- 
sidered a uniform cavity, by which is meant a cavity having a straight-line cavity- 
fluid interface when viewed from above in a geometry of infinite width. (In the case of 
a cylinder-plane geometry of infinite width, figure 1 ( c )  represents a characteristic 
cross-section.) Experimentally i t  is found that such a ,  situation pertains only under 
restricted conditions if at all; more likely is for the cavity-fluid interface to exhibit a 
waviness whose wavenumber varies with certain physical parameters (figure 2 ) .  

For this and other reasons the last word on the subject of boundary conditions has 
not been written and it is therefore appropriate to begin this paper with a review of 
important work and results. Subsequently a criterion is derived according to which 
a cavity-fluid interface may be uniform or wavy. The implications of this criterion are 
then examined for each of the cylinder-plane geometry, counter-rotating rollers and 
a journal bearing. The conclusions reached for the first two geometries support 
observations that a uniform cavity may arise under restricted conditions. In a closed 
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FIGURE 1.  Showing the presence of a cavity in cross-sections of (a) a journal bearing, 
( b )  counter-rotating cylinders and (c) a cylinder-plane geometry. 
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FIGURE 2. x, y cross-sections of flow approaching (a) a straight 
and ( b )  a wavy cavity-fluid interface. 

system however, i.e. the journal bearing (figure 1 a ) ,  there are two cavity-fluid inter- 
faces normal to  the fluid motion, occurring where the cavity forms and reforms 
respectively. It is found that under those conditions for which lubrication theory 
remains valid the criterion for a uniform interface a t  cavity formation cannot be 
satisfied whilst a t  reformation the criterion is essentially reversed and a uniform inter- 
face is predicted in agreement with experiment. 
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FIGURE 3. An x, z cross-section of the flow near the leading edge of the cavity 
in a cylinder-plane geometry of infinite width. 

2. Basic model: review of boundary conditions 
Figure 3 represents an enlargement of the flow pattern in the vicinity of the cavity, 

x = c, showing the presence of an eddy downstream of the position of separation x = s. 
The fluid not entrained within the eddy flows beneath the cavity and eventually forms 
a, uniform layer of thickness h, and moves with uniform speed U .  Rectangular axes 
are chosen such that z measures distance across the gap h(x) whilst the x and y axes 
are along the direction of fluid motion and across the width of the bearing respectively. 

For steady non-inertial fluid flow, the pressure P(x,y) in the lubrication regime 
(which extends as far as the cavity) is determined via the familiar Reynolds equation: 

in which y and U represent the fluid viscosity and the speed of the moving surface 
respectively. In  a bearing of infinite width which exhibits a uniform cavity gradients 
with respect to y are identically zero and hence 

9 - 6yU constant 
ax h2 + h3 

The velocity distribution in the gap, which satisfies the conditions u = 0 on z = 0 and 
u = U on z = h(x), is given by 

1 aP uz 
u(x, 2 )  = - - (22 -  xh) + - 27 ax h '  
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FIGURE 4. The pressure distribution in a lightly loaded 
cylinder-plane geometry obtained experimentally. 

Finally continuity of flow demands that 

which in turn reduces to 

In  hydrodynamic lubrication the procedure is to solve the above differential 
equation subject to appropriate boundary conditions on P(x) ,  namely 

P ( x  = - co) = 0, P ( x  s c )  = - T/r,  (2.4) 

where T represents the surface tension of the fluid and r the radius of curvature of the 
cavity-fluid interface in the x , z  plane at  x = c. Unfortunately, the position of the 
cavity, x = c,  is unknown; hence in order to obtain a solution a further condition is 
required, and it is precisely in the formulation of this condition that differences appear 
in the work of various authors. It is useful to consider a particular geometry, the 
' lightly loaded ' cylinder-plane geometry, for which the pressure distribution has been 
found experimentally (figure 4), and see to what 'extent the various conditions and 
solutions are able to account for the known features. 

Swift-Stieber condition (1 932, 1933) 

Swift, on the basis of a spurious stability argument, and Stieber, using an invalid 
continuity of flow argument, independently arrived at the condition 

(ap/ax),=, = 0, (2 .5)  

which gives rise to the pressure distribution shown in figure 5.  A comparison of this 
figure with figure 4 reveals that the inadequacy of the Swift-Stieber condition lies in an 
inability to ascertain the presence of a subcavity pressure loop immediately upstream 
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FIGURE 5 .  A theoretical pressure curve in a lightly loaded cylinder-plane 
geometry incorporating the Swift-Stieber condition. 

of the cavity. Nor indeed does it predict an eddy upstream of the cavity, the existence 
of which was verified experimentally by Van Der Bergh (1974). 

To be fair, however, Floberg (1957) has confirmed that the Swift-Stieber condition 
is appropriate in ‘highly loaded bearings ’, in which the cavity formation mechanism 
is somewhat dityerent. In such c,ircumstances high loads would tend to generate high 
pressures and whilst positive pressures (above atmospheric) are permissible there is a 
limit to the magnitude of the sub-atmospheric pressure P,, which can be achieved. 
As the pressure in some part of the fluid decreases to P,,, as the load is increased, the 
fluid film ruptures and air bursts out of solution. This causes a cavity to form further 
upstream than would otherwise be the case and for this cavity the following conditions 
apply: 

P(x = c) = - P,, (ap/ax),=, = 0. 

This kind of cavitation, which is not the subject of this paper, is called vaporization 
cavitation. 

Hopkins separation condition ( 1  957) 

Several workers (amongst whom Hopkins was the one whose work first appeared in 
print) have suggested that it is the reverse-flow eddy which provides a mechanism for 
cavity formation and consequently one should expect the cavity to form where fluid 
separates from the stationary surface, i.e. where the velocity and tangential stress 
are both zero (figure 3). A condition on the pressure gradient then follows via the 
velocity distribution (2.2): 

(aP/aX),=, = 211 C/h2(c) ,  (2.7) 

which in turn yields a pressure distribution similar to that in figure 4, in which the 
positions x = c and x = s become coincident. Essentially this implies that the cavity 
forms at  the position of separation and that if there is no separation there is no cavity. 
For lightly loaded systems this condition provided a major step forward in explaining 
not only the subcavity pressure loop but also why cavities are always present in 
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cylinder-plane geometries whilst in journal bearings a necessary condition is approxi- 
mately e > 0.3, where e is the eccentricity ratio. The explanation follows, of course, 
from the fact that lightly loaded cylinder-plane geometries always experience 
separation whilst e > 0-3 is the ciiterion for separation in journals. 

Unfortunately, by making the position of the cavity coincident with the position of 
separation, the Hopkins condition does not permit the existence of an eddy (figure 3) 
and therefore introduces errors which in some circumstances can be appreciable. 

Taylor (1963) 

Although he did not formulate a condition of his own, Taylor did provide insight and 
relationships which may well have inspired the later work of Coyne & Elrod (1970, 
1971). Following the work of Bretherton (196l),  who established the importance of the 
parameter 7 U / T  in the motion of long bubbles in tubes, Taylor showed experimentally 

. that the volume flow was dependent upon rU/T when h(c) was held constant. As we 
shall see this was indeed an important result. 

Coyne-Elrod condition (1970, 1971) 

Coyne & Elrod argued that (2.3) holds throughout the lubrication regime and hence 
an appropriate condition to apply at  the termination of this regime is 

appx = ( ~ V U / P )  (1 - 2 4  (2.8) 

provided that a = h,/h(c) is known. 
Essentially they looked a t  the steady fluid flow past the leading edge of the cavity as 

far as the uniform region at  infinity (figure 3), from which they determined the ratios 
h,/h(c) and r/h(c) as functions of 7 U / T :  

h,/h(c) = a, r/h(c) = p (2.9) 

(thereby confirming Taylor’s results). Coyne & Elrod’s solution to this difficult free- 
surface problem is not exact; it does involve assumptions regarding the wetting angle 
and the velocity distribution normal to the interface. Nevertheless for a cylinder- 
plane geometry all the experimentally known features are explained to a high degree 
of accuracy using (2.8) and (2.9).  

Subsequently Smith (1975) sought to apply Coyne & Elrod conditions to a journal 
bearing of infinite width (figure 1 a )  whose gap thickness is given by 

h(8) = h,( 1 + e cos 8) )  (2.10) 

in which x = R8, R is the radius of the rotating shaft and h, is the gap thickness when 
the shaft and bush are concentric. He found good agreement between theory and 
experiment for all qU/T  at high eccentricities (close to unity) but significant dis- 
crepancies for moderate eccentricities (0.3 < e < 0.8) and low values of qU/T .  We shall 
offer an explanation for these discrepancies and examine further evidence all of which 
suggests that the Coyne & Elrod conditions are not strictly applicable to lightly loaded 
journal bearings. 

Let E be the value of the gap thickness at  which the pressure gradient is zero, then 
(2.3) gives = 2h, and (2.9) becomes 

- 
h/h(c) = 2a, (2.11) 
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which is an  expression which must hold whenever Coyne & Elrod’s conditions are valid. 
Coyne & Elrod’s results reveal that a decreases monotonically with decreasing 7 U/T,  
and for low values of 7 U / T ,  a is very much less t,han unity (e.g. for r U / T  = 0.002, 
a = 0.015). 

I n  the particular range a < 1 and for moderate eccentricities (0.3 < e < 0.8) the 
following simple argument clearly demonstrates that (2.1 1) can never be satisfied in a 
journal bearing. Since h(0)  = h,( 1 + e cos 0) the ratio of the minimum gap thickness 
h m i n  to the maximum gap thickness h m a x  is 

hrninlhrnax = (1  - e ) / ( l  +el .  

This ratio will always exceed 0.1 for the above eccentricities and in addition 
- 
h/h(c) > hmin /hmax ,  thus Tl/h(c) > 0.1. (2.12) 

Clearly any E/h(c) satisfying (2.12) cannot simultaneously satisfy (2.11) when a < 1, 
thereby precluding the application of Coyne & Elrod boundary condit,ions in this range. 
Further evidence to support this conclusion comes from observations in journal 
bearings over a wide range of operating conditions in which the cavity-fluid interface 
is seen to consist of a series of ‘sharp-pointed fingers’ separated by fluid. Such an 
interface does not fulfil the requirements of Coyne & Elrod’s theory, which assumes the 
presence of a continuous cavity-fluid interface beneath which all the fluid flows to  
form a uniform layer of thickness h,. 

The elusive problem of ascertaining the correct boundary conditions at cavity 
formation in a journal bearing remains unsolved yet is worthy of further investigation 
because of its obvious practical importance. 

3. Stability criterion for a cavity-fluid interface 
As figure 2 demonstrates, a bearing of infinite width may exhibit a cavity-fluid 

interface whose shape in the x, y plane may be either wavy or straight. I n  this section 
a simple stability argument is employed in order to establish a criterion for predicting 
the transition from linearity to waviness. 

Without specifying any particular geometry we shall consider viscous fluid 
approaching the leading edge of a uniform cavity, and subsequently flowing beneath 
the cavity as shown in figure 2(a). I n  this equilibrium flow the force balance at the 
interface necessitates that the fluid pressure P(c) together with the surface-tension 
pressure should balance the air pressure within the cavity, which is assumed to be 
atmospheric (zero): 

P(c) + T / r  = 0. (3.1) 

Naturally the interface .?; = c is constantly subjected to small disturbances arising 
from fluctuations in fluid pressure within the bearing. An appropriate criterion, there- 
fore, can be derived if we pose and answer the following question: under what conditions 
is the interface stable in the sense of having the capacity to resist disturbances of the 
kind mentioned above and remain uniform 1 

Figure 6 indicates the effect of one such disturbance in which the point (c,  y) on the 
straight interface is displaced to a new position (c  +e, y), where i t  is assumed that 
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FIGURE 6. An x, y cross-section of flow approaching a straight cavity-fluid 
interface in which the point (c ,  y) is displaced to  (c + E ,  y). 

e/c < 1.  In  the region of the perturbation the net force per unit area in the x direction 
acting upon the interface (ignoring surface-tension effects in the x, y plane) is 

P = P(c + E )  + T / ~ ( c  + c), (3.2) 

where r(c + E )  is the radius of curvature in the x, z plane evaluated a t  c + E .  Linearizing 
about, x = c and using (3.1) yields 

F = E ~ ( P + T ) ,  dx (3.3) 

where the derivative is evaluated a t  x = c .  
If the interface is stable to  such disturbances it will return to its equilibrium position, 

in which case F and E must have opposite signs. The required criterion for the existence 
of a straight cavity-fluid interface is therefore 

(3.4) 

Equations (2.8) and (2.9) permit further simplification, and on writing h, for ahlax, 
(3.4) becomes 

h,(c) > P ( I  - za). (3.5) 

Application to a cylinder-plane geometry 

In  this geometry h(x)  = h,(l +x2/2Rho), in which h, = h(O) is the minimum gap 
thickness. Hence, after making the transformation 

x = (2Rho)t tan y [c = (2Rh0)4 tan ye], 

one solves (2.3) subject to the Coyne & Elrod conditions (2.4) and (2.8) to obtain the 
relation 

7~ sin2ye)+[(3iC 3n sin2yC +- sin4yc) ( - 2 a ) j  - -+-+- -- 
4 16 4 32 cos2yc . 

(3.6) 

This equation essentillay determines the position of the cavity once 7 U / T  and 
h,/R are fixed. When the transition from a straight to a wavy interface is required (3.5) 
provides a further relation among these three parameters, namely 

(y tanye = 6 g p ( 1 - 2 a ) .  (3.7) 
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FIGURE 7. Theoretical curves of (a)  yo against a and (b )  h,/R against v U / T .  
Experimental data: 0 ,  Smith (1975); ++, Savage. 

Consequently ye is obtained as a function of CL and similarly h,/R is obtained as a 
function of qU/T  as shown in figures 7 (a)  and (b ) ,  which also include comparison with 
experiment. 

The cylinder-plane apparatus, which consisted of a Perspex block supported above 
a brass cylinder of radius 5 in. (figure 1 c), permitted the range of values 

1 < (h,/R) x lo3 < 7 

to  be achieved. As figures 7 ( a )  and ( b )  demonstrate, agreement between theory and 
experiment over this range is remarkably good. 

Application to counter-rotating rollers 

A detailed treatment of the flow of thin liquid films between counter-rotating rollers, 
as shown in figure 1 ( b ) ,  was given by Pitts & Greiller (1961). One of their objectives was 
to establish critical conditions to mark the transition from uniform flow past a uniform 
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cavity to perturbed flow past a wavy interface using a theoretical model which assumes 
that the cavity shape in the x, z plane close to the axis of symmetry is parabolic and of 
the form 9 = 4 a ( x - c ) .  Taking the pressure drop across the cavity to be T/2a  they 
produce an argument similar to that described above to derive the stability criterion 
d(P+T/2a) /dx  < 0,  which, with a radius of curvature r = 2a, is identical to (3.4). 
Surprisingly however, they fail to  stress the generality of either the method or the 
result, rather they concentrate on the determination of a and daldx so as t o  conclude 
that a t  transition (TIT U )  h,/R is approximately constant. Whilst their agreement 
between theory and experiment uas  good they were unable to satisfy the complete 
set of boundary conditions and in addition had to make several approximations, one 
of which assumes that h(c)/h, = sec2 yc varies only slowly with r U / T .  

I n  contrast to the particular approach to this problem by Pitts & Greiller an alter- 
native is that outlined in this paper using (3.4) together with the results of Coyne & 
Elrod. For this geometry it is convenient to define h(x) to be half the gap thickneds a t  a 
position x along the axis of symmetry and then h(x) = h,( 1 +x2/2Rh,) as indeed is the 
case for a cylinder-plane geometry. Consequently the velocity distribution takes the 
form 

1 d P  
27 dx 

U ( X , Z )  = --(z2-h2)+ U ,  

which in turn enables the continuity conditions to yield the following expression for the 
pressure gradient: 

Writing h,/h(c) = a, the solution of (3.7a) which satisfies 

(3.7a) 

is ) (3yc 37r sin2V -+-+- 
4 16 4 

(3.7b) 

in which x = (2Rh,)t tan yc represents t,he leading edge of the cavity. For transition to 
a wavy interface the stability criterion (3.4) provides the relation 

f3.7c) 

thus permitting one to calculate yc as a function of a and h,/R as a function of 11 U / T  as 
in the previous example of the cylinder-plane geometry. The curves so obtained are 
similar in shape over the whole domain to figures 7 ( a )  and (b)  respectively and indeed 
this might have been expected from a comparison of (3.7a) and (3.7b) with (3.6) and 
(3.7),  in which the only difference is a halving in magnitude of 7 U  and a. 

It is in the light of these theoretical curves that the results of Pitts & Greiller may 
be examined. Recall that their experiments were performed over a restricted range 
of q U / T  and h,/R, well away from the limit of small q U / T  (small a ) ;  then over such a 
restricted range yc would vary slowly with q U / T  and h,/R would exhibit an almost 
linear variation with r U / T .  
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Finally, the limit of small 7 U/T (small h,/R) requires further experimental investi- 
gations, perhaps using rollers of larger diameter, so that the predicted behaviour may 
be confirmed or contradicted. 

Application to a journal bearing 

With the gap thickness given by h(8) = ho(l + e cos 8), (3.5) reduces to 

where the position of cavity formation 8 = 8, will lie in the range 7~ < 0, < 27r and for 
a given value of q U / T  the right-hand side of (3.8) will be a constant. Although, 
theoretically, it would appear that one can always find a value of h,/R which makes 
(3.8) valid and hence ensures the existence of a stable straight interface, it  must be 
remembered that there is a limit to the magnitude of h,/R for which the assumptions of 
lubrication theory continue to hold. (In particular the flow in the 8 , z  plane must 
remain essentially one-dimensional and inertia effects be negligible.) The values of 
h,/R required by (3.8) are always in excess of this limit, thus precluding the presence 
of a straight cavity-fluid interface at cavity formation. Indeed something of the 
severity of this criterion for a journal can be appreciated by making a comparison with 
that for the cylinder-plane geometry, equation (3.7). The factor h,/R as opposed to 
(ho/B)4 means that under 'normal operating conditions' the left-hand side of (3.8) is 
a t  least an order of magnitude smaller. 

Turning to the case of reformation, the stability argument has to be repeated and a 
new criterion determined, namely 

(2) lesin071 < 6-/3(l- YU &(P+:) > O  or T 
2a).  (3.9) 

Apart from 8' replacing Oc as the angular position of the interface, the sign of the 
inequality is reversed. It would indeed be convenient if one could deduce that (3.9) is 
necessarily valid since (3.8) is invalid. Strictly speaking this follows only if 

Isin 8'1 < Isin 8~1, 

However, if we bear in mind that, under normal conditions, when (3.8) fails at  forma- 
tion (i.e. (h,/R) le sin 8.1 < 6 ( q U / T )  /3( l - 2a)) this is primarily due to the small magni- 
tude of h,/R, we see that in fact the slightly stronger inequality 

(3.10) 

would hold, in which case (3.9) would naturally be valid a t  reformation, thereby 
confirming the existence of a stable straight cavity-fluid interface. 

The treatment given in this section is sufficient far predicting the transition from a 
straight to a wavy interface, but in order to understand the character of the perturbed 
interface the three-dimensional fluid flow in the vicinity of the interface has to be 
modelled and analysed. This forms the subject of part 2 of this study. 
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